Prisma retto avente per base un trapezio isoscele: calcolarne l’area della superficie totale
Un prisma retto che ha il volume di 720 cm3, ha per base un trapezio isoscele con la diagonale perpendicolare al lato obliquo. Il rapporto tra la diagonale e l’altezza del trapezio è 5/3 e la somma di questi 2 segmenti è 16 cm. Calcola l’area della superficie totale del prisma.
Innanzitutto, l’area della superficie totale del prisma sarà data dalla somma dell’area delle 2 basi, che sono 2 trapezi, con l’area delle facce laterali:
dove At, Al e Ab indicano rispettivamente l’area totale, laterale e di base del prisma retto. Ricordiamo che un prisma retto è tale se gli spigoli laterali sono perpendicolari alle facce di base.

Concentriamoci sull’area di base, cioè l’area del trapezio in cui le diagonali sono perpendicolari ai lati obliqui. Sappiamo che diagonale ed altezza sono l’una i 5/3 dell’altra e la loro somma è pari a 16 cm, perciò la diagonale sarà 5/8 della somma, mentre l’altezza i 3/8 (se usassimo il metodo grafico, rappresenteremmo con 5 unità la diagonale e con 3 l’altezza):
Ora del trapezio di base conosciamo la diagonale e l’altezza relativa alle basi. Per il calcolo dell’area abbiamo bisogno delle 2 basi, visto che la relativa formula di calcolo è:
Se conosciamo la diagonale e l’altezza, allora del triangolo rettangolo HBD possiamo calcolare la base HB col teorema di Pitagora:
Nel triangolo ABD, rettangolo in D perché diagonale e lato obliquo sono tra loro perpendicolari, HB è proiezione del cateto BD sull’ipotenusa AB. Con il secondo teorema di Euclide possiamo quindi conoscere la lunghezza della base maggiore AB; infatti, secondo tale teorema, ciascun cateto di un triangolo rettangolo è medio proporzionale tra l’ipotenusa e la proiezione del cateto stesso sull’ipotenusa.
Avremo:
Avremo:
Quindi:
Abbiamo così conosciuto la lunghezza della base maggiore AB. Per ottenere la lunghezza della base minore CD, basta considerare che il trapezio è isoscele, quindi le 2 proiezioni AH e KB devono essere congruenti, e HK = CD. Quindi:
Possiamo calcolare l’area del trapezio, ossia l’area di base Ab del prisma retto:
Poiché il volume di un prisma è dato dal prodotto dell’area della superficie di base per l’altezza
possiamo risalire all’altezza del prisma con la formula inversa:
Per l’area della superficie totale basterà sommare 2 volte l’area di base, cioè l’area del trapezio, all’area della superficie laterale Al. Determiniamo quest’ultima, ricordando che:
Per calcolare il perimetro 2p, abbiamo bisogno del lato obliquo AD = BC del trapezio, ricavabile attraverso il teorema di Pitagora applicato al triangolo rettangolo AHD:
Il perimetro 2p sarà:
E l’area laterale Al:
Infine, l’area totale At del prisma retto sarà: